Excess electron localization sites in neutral water clusters.

نویسندگان

  • László Turi
  • Adám Madarász
  • Peter J Rossky
چکیده

We present approximate pseudopotential quantum-mechanical calculations of the excess electron states of equilibrated neutral water clusters sampled by classical molecular dynamics simulations. The internal energy of the clusters are representative of those present at temperatures of 200 and 300 K. Correlated electronic structure calculations are used to validate the pseudopotential for this purpose. We find that the neutral clusters support localized, bound excess electron ground states in about 50% of the configurations for the smallest cluster size studied (n = 20), and in almost all configurations for larger clusters (n > 66). The state is always exterior to the molecular frame, forming typically a diffuse surface state. Both cluster size and temperature dependence of energetic and structural properties of the clusters and the electron distribution are explored. We show that the stabilization of the electron is strongly correlated with the preexisting instantaneous dipole moment of the neutral clusters, and its ground state energy is reflected in the electronic radius. The findings are consistent with electron attachment via an initial surface state. The hypothetical spectral dynamics following such attachment is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of localization sites for an excess electron in neutral methanol clusters using approximate pseudopotential quantum-mechanical calculations.

We have used a recently developed electron-methanol molecule pseudopotential in approximate quantum mechanical calculations to evaluate and statistically analyze the physical properties of an excess electron in the field of equilibrated neutral methanol clusters ((CH(3)OH)(n), n=50-500). The methanol clusters were generated in classical molecular dynamics simulations at nominal 100 and 200 K te...

متن کامل

Electron hydration dynamics in water clusters: A direct ab initio molecular dynamics approach.

Electron attachment dynamics of excess electron in water cluster (H2O)n (n = 2 and 3) have been investigated by means of full-dimensional direct ab initio molecular dynamics (MD) method at the MP26-311++G(d,p) level. It was found that the hydrogen bond breaking due to the excess electron is an important process in the first stage of electron capture in water trimer. Time scale of electron local...

متن کامل

Dielectron attachment and hydrogen evolution reaction in water clusters.

Binding of excess electrons to nanosize water droplets, with a focus on the hitherto largely unexplored properties of doubly-charged clusters, were investigated experimentally using mass spectrometry and theoretically with large-scale first-principles simulations based on spin-density-functional theory, with all the valence electrons (that is, 8e per water molecule) and excess electrons treated...

متن کامل

Electron attachment to strongly polar clusters Formamide molecule and clusters

Electron localization is studied in formamide cluster anions. The isolated formamide molecule has a large dipole moment and its clusters can give birth to multipole-bound anions as well as valence anions. The vertical valence electron affinity of the isolated molecule is determined by electron transmission spectroscopy. The anion formation process is studied as a function of cluster size with R...

متن کامل

Generalized Valence Bond Studies of Metallic Bonding: Naked Clusters and Applications to Bulk Metals

that the yield of matrix-trapped excess electrons in D 2 0 is larger than in H20 and concluded that D 2 0 is less efficient in the initial electron localization (to yield the solvated electron) than HzO. Our results do not, however, answer the question whether a solvated electron represents the ground state of a cluster anion comprised of as few as 12 water molecules. The reason for this differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 125 1  شماره 

صفحات  -

تاریخ انتشار 2006